VOLATILE ORGANIC COMPOUNDS (VOCs)

SW-846 Method 8260

Table 1A. Summary of Holding Times and Preservation for Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry

Analytical Parameter ^a	Technical and Contract Holding Times	Preservation
Volatile Organic Compounds (VOCs) in Water	<pre>Technical: 7 days from collection; Contract: 5 days from receipt at laboratory</pre>	Cool to 4EC ±2EC;
VOCs in Water	<pre>Technical: 14 days from collection; Contract: 10 days from receipt at laboratory</pre>	HCl to pH <2; Cool to 4EC ±2EC
VOCs in Soil	Technical: 48 hours Contract: 48 hours	Cool to 4EC ±2EC; sealed zero headspace containers; freezing can extend the holding time b
VOCs in Soil	<pre>Technical: 14 days from collection; Contract: 10 days from receipt at laboratory</pre>	Preserved samples: in methanol ^c or sodium bisulfate ^d

^a Individual target compounds are listed in Table 1B.

Data Calculations and Reporting Units:

Calculate the response factor (RF) and the concentration of individual analytes according to the equations specified in Sections 7.3.4 of Method 8260. Report water sample results in concentration units of micrograms per liter (Fg/L).

Report soil sample results on a dry-weight basis in micrograms per kilogram (Fg/kg). Report percent solid and percent moisture to the nearest whole percentage point.

For rounding results, adhere to the following rules:

- a) If the number following those to be retained is less than 5, round down; b) If the number following those to be retained is greater than 5, round up; or c)If the number following the last digit to be retained is equal to 5, round down if the digit is even, or round up if the digit is odd.
- All records of analysis and calculations must be legible and sufficient to recalculate all sample concentrations and QC results. Include an example calculation in the data package.

b Freezing the sample can extend the holding time; however, 48 hours unfrozen holding time will be considered cumulative.

 $^{^{\}rm c}$ Use Method 5030 for purge and trap. $^{\rm d}$ Use Method 5035 for purge and trap.

Table 1B. Target Compound List, CAS Numbers, and Contract Required Quantitation Limits for Volatile Organic Compounds by Method 8260

<u>Analyte</u>	<u>CAS Number</u>	CROL Fg/La	CRQL Fg/Kg ^b
Benzene	71-43-2	1	5
Bromobenzene	108-86-1	1	5
Bromochloromethane	74-97-5	1	5
Bromodichloromethane	75-27-4	1	5
Bromoform	75-25-2	1	5
Bromomethane	74-83-9	1	5
n-Butylbenzene	104-51-8	1	5
sec-Butylbenzene	135-98-8	1	5
tert-Butylbenzene	98-06-6	1	5
Carbon tetrachloride	56-23-5	1	5
Chlorobenzene	108-90-7	1	5
Chlorodibromomethane	124-48-1	1	5
Chloroethane	75-00-3	1	5
Chloroform	67-66-3	1	5
Chloromethane	74-87-3	1	5
2-Chlorotoluene	95-49-8	1	5
4-Chlorotoluene	106-43-4	1	5
1,2-Dibromo-3-chloropropane	96-12-8	1	5
1,2-Dibromoethane	106-93-4	1	5
Dibromomethane	74-95-3	1	5
1,2-Dichlorobenzene	95-50-1	1	5
1,3-Dichlorobenzene	541-73-1	1	5
1,4-Dichlorobenzene	106-46-7	1	5
Dichlorodifluoromethane	75-71-8	1	5
1,1-Dichloroethane	75-34-3	1	5
1,2-Dichloroethane	107-06-2	1	5
1,1-Dichloroethene	75-35-4	1	5
cis-1,2-Dichloroethene	156-59-2	1	5
trans-1,2-Dichloroethene	156-60-5	1	5

1,2-Dichloropropane	78-87-5	1	5
2,2-Dichloropropane	594-20-7	1	5
1,3-Dichloropropane	142-28-9	1	5
1,1-Dichloropropene	563-58-6	1	5
Ethylbenzene	100-41-4	1	5
Hexachlorobutadiene	87-68-3	1	5
Isopropylbenzene	98-82-8	1	5
p-Isopropyltoluene	99-87-8	1	5
Methylene chloride	75-09-2	1	5
Naphthalene	91-20-3	1	5
n-Propylbenzene	103-65-1	1	5
Styrene	100-42-5	1	5
1,1,1,2-Tetrachloroethane	630-20-6	1	5
1,1,2,2-Tetrachloroethane	79-34-5	1	5
Tetrachloroethene	127-18-4	1	5
Toluene	108-88-3	1	5
1,2,4-Trichlorobenzene	120-82-1	1	5
1,2,3-Trichlorobenzene	87-61-6	1	5
1,1,1-Trichloroethane	71-55-6	1	5
1,1,2-Trichloroethane	79-00-5	1	5
Trichloroethene	79-01-6	1	5
Trichlorofluoromethane	75-69-4	1	5
1,2,3-Trichloropropane	96-18-4	1	5
1,2,4-Trimethylbenzene	95-63-6	1	5
1,3,5-Trimethylbenzene	108-67-8	1	5
Vinyl chloride	75-01-4	1	5
o-Xylene	95-47-6	1	5
m-Xylene	108-38-3	1	5
p-Xylene	106-42-3	1	5
Methyl-t-butyl ether	163-40-44	1	5
Dichlorofluoromethane	75-43-4	1	5
<u> </u>	1		1

 $^{^{\}rm a}$ Based on 25 mL water purge. $^{\rm b}$ Based on wet weight

Table 2. Summary of Calibration Procedures for VOCs by SW-846 Method 8260

Calibration Element	Frequency	Acceptance Criteria	Corrective Action
GC/MS Tuning with BFB	Beginning of each 12 hour period during which standards samples are analyzed	Ion abundance criteria in Table 4 of Method 8260	1. Identify the problem. 2. MS tune criteria must be met before any calibration standards, samples, blanks, or QC samples are analyzed
Initial Calibration (minimum blank + 5 points for each analyte) (ICAL) ^{a, b, c}	Initially; whenever required, due to failure of CCV	RSD for RFs #20%;	1. Terminate analysis 2. Recalibrate and verify before sample analysis
Continuing Calibration Verification (CCV)	Following ICV, every 12-hour, and end of run	%D between RF of CCV and avg RFs from ICAL #15%	1. Recalibrate and verify 2. Reanalyze samples back to last good CCV
System Performance Check Compound (SPCC)	With ICAL or CCV	RF for chloromethane, 1,1-dichloroethane, bromoform, \$0.10; chlorobenzene, 1,1,2,2- tetrachloroethane, \$0.30	1. Terminate analysis 2. Recalibrate and verify before sample analysis
Calibration Check Compounds (CCC)	With ICAL or CCV	RSD for RFs #30%	1. Terminate analysis 2. Recalibrate and verify before sample analysis
Internal Standards	Each analysis of CCV	-50 to +100%	1. Re-analyze all samples analyzed while system was out-of-control
Retention time evaluation of CCV standards	Each analysis of CCV standard	±3 x the SD of the avg ICAL RT for each analyte	1. Re-calibrate and verify 2. Re-analyze samples back to last good CCV

^a The ICAL low standard must be above but near the CRQL. The low ICAL standard must have a signal to noise ratio \$5:1. If this requirement cannot be met, the laboratory must submit a MDL study as part of the data package.

b ICAL and continuing CAL standards must contain all target analytes listed in Table 1B.

^c Report the retention time window for each analyte. Determine retention time windows as ±3 x the standard deviation of the average initial calibration retention time for each analyte.

Table 3. Summary of Internal Quality Control Procedures for VOCs by SW-846 Method 8260

QC Element	Frequency	Acceptance Criteria	Corrective Action
Method Blank (MB)	Each 12-hour time period, minimum of one per SDG a	< CRQL for each compound	 Investigate the source of contamination and document. Reanalyze all samples processed with a blank that is out of control.
Matrix Spike and Matrix Spike Duplicate (MS/MSD)	One MS/MSD set per batch or SDG (1 MS/MSD set per 20 samples minimum)	Water Sample: 65-135% of expected value; #30% RPD between MS and MSD Soil Sample: 50-150% of expected value; #50% RPD between MS and MSD	1. Report in case narrative
Surrogate Spikes: ^b	Every sample, standard and method blank	<pre>Water Sample: 85-115% except for 1,2-dichloroethane (75- 115%) of expected value Soil Sample: 70-125% of expected value</pre>	1. Reanalyze all samples with non-compliant surrogate recoveries
Laboratory Control Sample (LCS)	One per SDG	Water Sample: 70-130% of expected value Soil Sample: 65-135% of expected value	1. Investigate the source of problem and document. 2. Reanalyze all samples processed with a LCS that is out of control.

^a SDG - Sample Delivery Group - each case of field samples received; or each 20 field samples within a case; or each 14 calendar day period during which field samples in a case are received.

^b Toluene-d₈, BFB, 1,2-dichloroethane-d₄, and Dibromofluoromethane

Dilute and reanalyze samples which contain one or more target analytes at concentrations above the initial calibration range. Results for such reanalyses should fall within the mid-range of the calibration curve.

Report results and submit documentation for both analyses.